满分范文网 >计划书

人教版六年级数学上册教案7篇

教案有助于教师提前解决可能出现的问题或挑战,教案的有效性可以通过学生成绩、学生反馈和教师自我评估来评估,下面是满分范文网小编为您分享的人教版六年级数学上册教案7篇,感谢您的参阅。

人教版六年级数学上册教案7篇

人教版六年级数学上册教案篇1

教材分析

理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

学情分析

分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

教学目标

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.能正确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学重点和难点

教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:分数除以整数计算法则的推导过程。

教学过程

一、创设情景,教学分数除法的意义

1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

(1)每盒水果糖重100g,那么3盒有多重?

100×3=300(g)

(2)3盒水果糖重300g,那么每盒有多重?

300÷3=100(g)

(3)300g水果糖,每盒重100g,可以装几盒?

300÷ 100=3(盒)

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1)引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/5。

师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

4/5÷2

请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

4/5÷2=4÷2/5=2/5

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

4/5÷2=4/5×1/2=2/5

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的'是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

能再讲讲这样做的道理吗?

师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/5的多少?

通过直观图理解4/5的1/3是4/15

(3)比较归纳,发现规律。

分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

结果最简。除号要变成乘号。

三、巩固练习

学生独立完成

四、课堂小结

1、分数除法的意义是什么?

2.分数除以整数的计算法则是什么?(学生总结)

五、作业布置

人教版六年级数学上册教案篇2

教学目标:

1、认识圆,知道圆的各部分名称;

2、掌握圆的特征,理解和掌握在同一个圆里半径与直径的关系;

3、学会用工具画圆;

4、培养学生的观察能力,动手能力以及抽象概括能力。使学生初步学会应用所学知识解决简单的实际问题;

5、让学生喜欢上美丽的圆,激发探索圆的特征的兴趣。

重点难点:

理解和掌握圆的特征。

教学准备:

课件

教学过程:

一、课前活动

同学们,上课之前我们先轻松一下做一做课间操怎样?起立。

第一节:甩甩你的手臂(从前往后再换个方向)

第二节:转转你的脑袋

第三节:原地转身

二、导入新课

1、师:上课前的运动操你们发现了什么?(在做圆周运动)

2、师:刚才发现有的同学手臂转得不太像圆,什么办法转得更像圆呢?(手直、肩不动)

3、师:我们在运动中可以产生圆,在生活中也有许多的圆,大家看:欣赏圆的图片。

4、揭题:圆的认识。

5、师:我们看在这餐桌中看到了有几个圆?

这中间有着许多的数学知识,相信吗?

三、动手操作

(一)师:下面我们就做一做这个餐桌。

[媒体]做一做:同桌合作,每人在白纸上画一个圆,然后剪下组合成一张圆桌模型。

(二)师:下面我们交流一下是怎么做的?

[第一步]我们第一步是画圆,你是怎么画的?

1、说说你是怎么用圆规画圆?

2、师:老师也在黑板画一个圆(边画边说)

把圆规的两脚分开,定好两脚间距离(半径)。

把有针尖的一只脚固定在一点(圆心)上。

把装有铅笔的一只脚旋转一周,就画出一个圆。

3、老师的圆画得怎样?画圆的时候要注意什么?(针尖不动、两脚距离固定)

4、你们画的两个圆的大小为什么不一样?(两脚的距离不同)

[第二步]我们是把画好的圆剪下来,问:剪时与我们以前的剪正方形、三角形的时候有什么不同?

师:圆呢?(弯的)弯的在数学上我们叫做曲线,所以圆是由曲线围成的与以前所学习的由线段围成的平面图形有很大的区别。

[第三步]

剪下的圆怎么组合起来呢?这2个针孔从哪里来?

师:针孔的这一点,我们叫做这个圆的圆心也可以用字母“o”表示。

师:还有什么办法找到圆心呢?(折)你们先拆下来试一试。(生动手操作)

师:说说你是怎么折的?

可能:①生:对折再对折,交点就是圆心师:还可以怎么折?

②对折、展开、再对折、再展??

师:我们再看这里有几条折痕?而且它们都经过(圆心)像这样的折痕叫这个圆的直径字母d表示(画在黑板上)。

师:圆里还有什么?(半径)你折的圆里有吗?指一指(画在黑板上)这就是半径。

师:什么是直径、半径,自学课本p80读一读。

师:说一说什么是直径?解释圆上、圆外、圆内。

我们一起指指,说说什么是半径?

[媒体]连结圆心和圆上一点,是半径吗?半径也有几条?为什么?[板书]

你们也画一条直径和半径。

仔细观察,你还发现了什么?

①一条直径=两条直径。

师:还可以怎么说?你是怎么知道?用字母可以怎么表示呢?

②所有的直径、半径都相等。

师:你们认为呢?可以用什么方法证明?(量一量)你量一量。

你量的是什么?量的结果呢?你的结论呢?

师:大家观察得很仔细也很会动脑筋,现在老师有个问题不知可以?所有的直径长度都相等?(在同一个圆里)还可以呢?(相等的圆)你认为还有哪些结论也需要这个前提?

[板书]:在同圆或等圆中

三、应用

师:所以我们今后在考虑问题的时候还得想得仔细、周详,对吗?下面我们来看一组填空

1、[媒体]填一填

2、[媒体]再请你辩一辩:下面各句话对吗?

(1)两端都在圆上的线段叫直径

(2)所有的半径都相等

(3)圆是由曲线围成的封闭图形

四、画圆

师:回答得不错,现在老师要提一个新的要求,能接受吗?

请你画一个半径为2厘米的圆?

师:想想半径为2厘米该怎么画呢?可以商量一下再画。(生画)

师:说说你是怎么画的?(两脚间的距离为2厘米,再定住,再画)

简单地说你是怎么确定半径为2厘米的?

如果画半径为3厘米的圆呢?

画一个直径为8厘米的圆呢?

你发现了什么联系?(半径=圆规两脚之间的距离)

圆的大小是由什么决定的?位置呢?

画一个直径为1米的圆

(等一会儿)

师:为什么不画?(圆规太小)想有什么办法呢?(钉子、绳子)绳子多长?(50厘米)为什么?我们下课试一试好吗?

五、总结

师:今天我们学习了圆的认识,从圆桌到圆的各种知识还有什么知识值得我们问一问有吗?

师:这些都是我们以后要学习的,老师还有一个问题:谁的家里用的是西餐桌?有什么感觉?相对来说,圆桌呢?

人教版六年级数学上册教案篇3

教学目标:

1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

2、根据题意,能画线段图分析图意。

3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

教学过程:

一、巩固旧知,过渡引入

1、根据题意,判断谁是单位1,并写出各题的数量关系。

(1)故事书本的2/5等于连环画的本数。

(2)梨重量的7/8是840千克。

(3)男生人数是全班人数的2/3 。

2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

二、学习新知

1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

(1)读题,找出已知条件和问题。

(2)根据题意与线段图理解题中的条件和问题。

(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

体重× 4/5 =体内水分重量

师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

(4)学生尝试练习方程解答,个别板演,教师点评。

(1)解:设这个儿童体重χ千克

(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

χ=35答:这个儿童体重35千克。

人教版六年级数学上册教案篇4

教学目标:

1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。

2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。

教学重点:

在方格纸上用数对确定点的位置

教学难点:

利用方格纸正确表示列与行。

教学准备:

教师准备:投影机。

学生准备:方格纸

教学过程

一、复习巩固

标出下列班上同学的位置(图略)

{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}

二、新知探究

(一)教学例2

1.我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)

3.同桌讨论说出其他场馆所在的位置,并指名回答。

4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

{充分利用学生已有的生活经验和知识,鼓励学生自主探索、合作交流。在教学时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。}(二)、课堂提高

练习一第6题

(1) 独立写出图上各顶点的位置。

(2) 顶点a向右平移5个单位,位置在哪里?哪个数据发生了改变?点a再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3)照点a的方法平移点b和点c,得出平移后完整的三角形。

(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。

(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

{。让学生看到在平面上用数对表示点的位置的方法,架起了数与形之间的桥梁,加强了知识间的相互联系。}

三、当堂测评

练习一第4题

学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。

练习一第5题

(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。

(2)同桌互相合作,一人描述,一人画图。

{继续渗透数形结合的思想.}

四、课堂自我评价

这节课你觉得自己表现得怎样?哪些方面还需要继续努力?

五、设计意图:

本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。

人教版六年级数学上册教案篇5

教学内容:

九年义务教育六年制小学数学课本第十一册“比的意义”。

教学目标:

1.掌握比的意义,会正确读、写比。

2.记住比的各部分名称,会正确求比值。

3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。

4.通过自学讨论,激发学生合作学习的兴趣,培养学生分析、比较、抽象、概括和自学探究的能力。

一、创设情境,诱发参与

1、师:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?可以提出什么问题,怎样列式解答?

生1:牛奶比果汁多1杯。

生2:果汁比牛奶少1杯。

生3:果汁的杯数相当于牛奶的

生4:牛奶的杯数相当于果汁的

师:2÷3是哪个量和哪个量比较?

生:果汁的杯数和牛奶的杯数比较。

师:3÷2求得又是什么,又可以怎样说?

生:牛奶的杯数和果汁的杯数比较。

2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学习用一种新的方法对两种量进行比较。(板书:比)

3、师:那么这节课你想学习比的哪些知识呢?

(什么叫比,谁和谁比……)

二、自学探究新知

1.探究比的概念

教师指着板书问:2÷3求的是什么?是哪个量和哪个量的比?

生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。

师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。

(板书:果汁和牛奶的比是2比3,学生齐读。)

师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。

生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。

(板书:牛奶和果汁的比是3比2)

师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?

生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。

师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。

出示试一试。

师:1:8表示什么意思?

生:1和8表示洗洁液1份,水8份。

师:怎样表示容液里洗洁液与水体积之间的关系?

生:先求出体积再比较。

课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。

师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?

师:说说900米和15分钟的意义。

生:900米和15分钟分别是小军走的路程和时间。

师:那么小军的速度又可以说成哪两个量的比?

生:小军的速度可以说成路程和时间的比。

师:什么叫比?(同桌互相说一说,然后汇报。)

生1:除法叫比。

生2:两个数相除叫比。

师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?

生1:加上“又可以”。

生2:加上“又”字。

师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?

(随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)

2.自学探究比的各部分名称等知识。

师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。

(学生同桌相互说完后,集体汇报探究。)

生:我学会了比的写法。

(老师指着2比3,让学生到黑板上写出2∶3。)

师:2、3中的符号“∶”是什么呀?

生:这是比号。(板书:比号)

师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)

生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。

师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)

生:我知道了比的读法。

(教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)

师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?

人教版六年级数学上册教案篇6

本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

教材还编排了很多问题情境图来突破教学中的重难点问题。

例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

第1课时比的意义

教材48~49页的内容。

1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

重点:

理解比的意义以及比与分数、除法之间的关系。

难点:

理解比与分数、除法之间的关系,明确比与比值的区别。

课件:

学具。

1.课件出示教材第48页情境图。

教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

(1)长比宽多多少厘米?15-10;

(2)宽比长少多少厘米?15-10;

(3)长是宽的多少倍?15÷10;

(4)宽是长的几分之几?10÷15。

2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

自学比的相关知识。

学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

(1)比各部分的名称。

课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

(2)比值的意义。

师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

讨论后根据学生交流反馈填写下表:

联系

区别

除法

被除数÷除数=商

一种运算

分子—分母=分数值

前项:后项=比值

两个量的关系

请尝试用字母表示比和除法、分数之间的内在联系。

板书:a∶b=a÷b=(b≠0)。

师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

1.教材第49页“做一做”第1题。

请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

2.教材第49页“做一做”第2题。

学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

说说这节课我们学习了什么?你有什么收获?

教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

第2课时比的基本性质

教材第50~51页的内容。

1.理解和掌握比的基本性质,初步掌握化简比的方法。

2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

重点:

理解比的基本性质。

难点:

正确应用比的基本性质化简比。

课件、答题纸、实物投影。

师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

板书:比的基本性质。

学生纷纷猜想比的基本性质。

根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

1.教学比的基本性质。

师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

(4)全班验证。

2.完善归纳,概括出比的基本性质。

10∶15=10÷15==

15∶9=15÷9=

16∶20=(16

□)∶(20

□)

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善并板书。

(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

3.深化认识。

利用比的基本性质做出准确判断:

(1)8∶10=(8+10)∶(10+10)=18∶20( )

(2)12∶16=(12÷6)∶(16÷4)=2∶4( )

(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

(4)比的前项乘3,要使比值不变,比的后项应除以3。

( )

4.比的基本性质的应用。

(1)引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

(2)从下列各比中找出最简整数比,并简述理由。

3∶4 18∶12 19∶10 ∶ 0.75∶2

(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

学生独立尝试,化简后交流。

(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

四人小组讨论研究,找到化简的方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

5.方法补充,区分化简比和求比值。

)

还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

2.教材第53页“练习十一”第4题。学生口答完成。

这节课你有什么收获?还有什么疑问?

比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的.“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

教材第54页的内容。

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

课件。

课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

1.课件出示教材第54页例2。

师:题目中要配制什么?(配制500

ml的稀释液)

师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

师:“浓缩液和水的体积比是1∶4”是什么意思?

生:就是说在500

ml的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

师:你能求出浓缩液和水的体积各是多少毫升吗?

引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

思路一:先把比化成分数,用分数乘法来解答。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500×=100(ml)

水的体积:500×=400(ml)

思路二:把比看作分得的份数,先求一份数,再求几份数。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500÷5×1=100(ml)

水的体积:500÷5×4=400(ml)

2.验证所求问题。

方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

3.明确按比例分配的意义。

在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

4.整理解题思路。

(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

1.教材第55页“练习十二”第1、2题。

第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

3.教材第56页“练习十二”第11题。

注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

今天这节课我们主要研究了什么?说说你的收获和感受。

本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

人教版六年级数学上册教案篇7

教学目标:

1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

2、通过观察、操作、想象等活动,发展空间观念。

教材分析:

重点在观察、操作中体会圆的特征。知道半径和直径的概念。

难点圆的特征的认识及空间观念的发展。

教具准备:

教学圆规、电化教具、课件

教学过程:

一、 观察思考

1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。

2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。

3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)

4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。

二、画圆

1、你们谁能画出圆来吗?动手试一试。

2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。

3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)

三、认一认

1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。

2、半径和直径的辨认。

四、画一画,想一想

1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直径呢?(放动画)

2、以点a为圆心画两个大小不同的圆。

3、画两个半径都是2厘米的圆。

4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?

五、应用提高

讨论:圆的位置和什么有关系?圆的大小和什么有关系?

六、作业

1、教材第5页练一练

2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)

训练学生的观察能力,发现问题的能力

不直接说出圆,把思考的空间留给学生

在画图中体会圆的特征

思考共同之处时再一次体会圆的特征

通过正反例的练习,加深对半径和直径的理解

动手操作,理解画圆的关键是定圆心(位置)和半径(大小)

巩固提高,满足不同学生要求

板书设计:

圆的认识(一)

圆(本质特征):圆上各点到定点(半径)的距离都相等。

圆的画法:

圆的相关概念:圆心,半径,直径

同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。

教学后记:

在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆

的半径的作用能理解,掌握了本课的重点内容。

会计实习心得体会最新模板相关文章:

北师大版六年级数学教案最新5篇

三年级下册数学人教版教案5篇

人教版数学广角教案7篇

人教版一年级上册画教案5篇

六年级上册数学人教版教案7篇

八年级上册数学教学工作计划7篇

小学数学一年级上册工作计划7篇

北师大版六年级数学教案7篇

小学数学人教版一年级教案6篇

六年级上册数学人教版教案模板8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    71537

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。